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ABSTRACT

A General Solution of the Ripple-Averaged Kinetic Equation, GSRAKE, is presented
and used to investigate neoclassical transport in the model magnetic field of a simple
stellarator. No assumptions are made as to the relative sizes of the collision frequency,
v, and poloidal precessional frequency, g, so that the solution is valid throughout
the entire long-mean-free-path regime. Separate but fully self-consistent treatments of
both localized and non-localized particles are provided; the interaction between these
two classes of particles is accounted for through a set of appropriate physical boundary
conditions. All drift terms present within the framework of the ripple-averaged theory
are -included; in particular, for localized particles 29 = Qg + Qvp is comprised of
both the ExB and VB precessional frequencies. The solution is thus equally valid in
the Qg > Qvp and the g = 0 limits of standard neoclassical theory. A detailed
comparion of results with those of the FLOCS code (D’haeseleer, Hitchon and Shohet,
1991 J. Comput. Phys. 95, 117) is undertaken; estimates of neoclassical transport
coefficients obtained from several codes are also presented. Good agreement of results
is found in all of these comparisons, GSRAKE requiring but a tiny fraction of the

computational time necessary for the other codes.




I. INTRODUCTION

Theoretical efforts to understand and describe neoclassical transport in toroidal
stellarators have been undertaken now for more than two decades. During this period
of time, a number of approaches, both analytical and numerical, have been developed
to investigate various aspects of this topic. Most of the early literature (which served
to define the subject) is analytic in nature [1-4] and many subsequent authors [5-12]
have also chosen this approach to further refine, develop and extend the initial theories.
Analytic descriptions of neoclassical transport are attractive since they provide physical
insight into the various transport mechanisms and offer quick estimates of the associated
neoclassical losses. They have the drawback, however, of employing a number of
simplifying assumptions; these make the given problem tractable at the expense of
limiting the validity of the results obtained. The appearance and current prevalence
of numerical methods for the determination of neoclassical transport coefficients in
stellarators has been driven to a large extent by the desire to avoid many of these
assumptions. Among these numerical calculations are a number of Monte Carlo simu-
lations [13-18], two solutions of the bounce-averaged Fokker-Planck equation, FPSTEL
[19] and FLOCS [20], and a solution of the drift-kinetic equation, DKES [21,22]. The
principal disadvantage of these computational approaches lies in the significant amounts
of computer time which they consume. (Note: the list of references cited above is
meant to be a representative sample from the extensive literature and is by no means
exhaustive.)

The paper at hand is devoted to a general solution of the ripple-averaged kinetic
equation (henceforth referred to by its acronym, GSRAKE) and to some initial examples
of its use in the study of neoclassical transport in stellarators. The claim of,a “general”

solution rests on three important properties which are summarized in the following.

e The solution is valid throughout the entire long-mean-free-path (Imfp) regime, i.e..
at all values of collision frequency for which the ripple-averaged kinetic equation is
appropriate.

e The solution encompasses all of pitch-angle space. It is common practice in stellarator
theory to divide velocity space into two regions, one in which localized particles exist
(trapped in the stellarator’s helical ripple) and a second where the particles are non-
localized (either on completely passing trajectories or executing tokamak-banana-like
orbits). Both regions are considered on an equal footing in GSRAKE, and their

interaction is also accounted for.
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o All drift terms present within the framework of the ripple-averaged theory have been
included. In particular, the poloidal rotation of localized particles includes contributions
due to the ExB and VB drifts, designated Qg and Qvp, respectively. The common
assumption Qg > Qv p may thus be dropped; indeed, GSRAKE makes it possible to

consider cases where precisely the opposite is true.

Many of these properties can also be claimed by the other numerical calculations men-
tioned above. GSRAKE has the additional distinction, however, of great computational
speed; CPU times of a few seconds or less are typical even when the collision frequency
becomes very small. Its speed and general nature combine to set GSRAKE apart from
previous analytical and numerical approaches and make it particularly well-suited for
neoclassical transport studies.

This paper is organized in the following manner. The ripple-averaged kinetic
equations for localized and non-localized particles are introduced in Section II. An
idealized model magnetic field has been assumed (although more general expressions for
B are also possible) to f,implify the presentation and to facilitate an interpretation of the
results given in later sections. The solution of these kinetic equations using a numerical
scheme is described in Section III. As this scheme combines several standard numerical
techniques, only the GSRAKE-specific irﬁplementation thereof will be detailed. Section
IV is devoted to a brief description of the FLOCS code, in preparation for the detailed
comparison of GSRAKE and FLOCS results which follows in Section V. Monte Carlo
and DKES estimates of neoclassical transport coefficients are also presented in this sec-
tion and compared with the predictions of GSRAKE and FLOC S. Some final comments

and a summary of the results are provided in Section VI

II. THE RIPPLE-AVERAGED KINETIC EQUATION
— (a) Preliminaries

Consider the simple model for the magnitude of the magnetic field in a toroidal
stellarator

B/By =1 — €(r)cos 8 — ep(r) cos(£ — po) (1)

expressed in the magnetic coordinate system (r,¢,6) [14]. Here r is a flux surface label
(related to the toroidal flux through the expression ¢ = Bor?/2), ¢ and 6 are toroidal
and poloidal angle-like variables, respectively, £ is the field multipolarity and p is the

field period number. The magnitude of the toroidal modulation of B is given by € (not
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necessarily equal to ¢, = r/Rp, the inverse aspect ratio); €, is the magnitude of the
stellarator’s helical ripple. It is explicitly assumed that e.e; < 1.

Field lines are “straight” in the given coordinate system, specified through the
equation 6 = 6y + +(r)¢. where + is the rotational transform. Typically for stellarators
+ < |l+ — p|; along magnetic field lines, B is thus characterized by a rapid modulation
due to the helical ripple superimposed over a slower toroidal modulation. Stated
somewhat differently, # remains nearly constant over one period of the helical ripple
phase n = {0 — po.

To complete the specification of phase space it is common practice to choose the
total energy, £ = & + ¢®(r), and the magnetic moment, u = mv?/2B, as velocity-
space variables since these quantities are adiabatic invariants within the framework of
guiding-center theory. Here k = mv?/2 is the kinetic energy with v? = v“ +v?, s
the electrostatic potential and m and ¢ are the particle mass and charge, respectively.
For the set of variables (r,6,6,€,1) and the model magnetic field of equation (1), the

time-independent drift kinetic equation may then be expressed

drOF  d9OF dfoF _
dtar+dta¢ dt 06

where the drift equations are given by

Lu(F)
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and with collisional processes modeled using the Lorentz collision operator

2% . 0 BF

w here v is the 90-degree deflection frequency. The F' = F(r,¢.6,&, 1) appearing in
equatlon (2) is the total distribution function — to this point no ordering assumptions

have been made.



The individual terms appearing in the drift equations are identified with: (a) rapid
particle motion along the magnetic field with velocity v); and (b) the much slower
motion perpendicular to B with characteristic velocities vq and (—9®/0r)/ By, arising
due to the VB and ExB drifts, réspectivel}'. The magnitude of the parallel velocity

may be determined from

5 1/2 AuB 1/2
u = |y = ('{E(“ _ﬂ3)> - (_’{_L‘fh_) (k? - sin®(y/2))""?,

m

where

k/uBo — 1+ ecosf + ¢,
26h ’

k=

Although it is not a constant of the motion, the use of k? as pitch-angle variable in
place of p does offer certain advantages if the toroidicity of B may be considered as
a negligible perturbation to the sinusoidal symmetry of a helical ripple well (which
is usually expressed as the requirement that a = e¢/(ep|f+ — p|) < 1). In this case
only localized particles can undergo reflection in the magnetic field (v = 0) and must
therefore satisfy 0 < k? < 1, whereas non-localized particles are considered to be locally
passing and thus characterized by k? > 1. Clearly then, the boundary in pitch-angle
space separating localized from non-localized particles occurs at k% = 1.

The time required by localized particles to execute a complete “bounce” -in the

helical ripple may now be determined from

Ty = —
Y|

where dl = Rd¢ = Rdn/({+ — p) is taken along a field line. Explicitly, the bounce time

b 1/2
2 L2 ) e
lﬁf - p| Iff — p| \ uBoen

where 1, = 2sin”' k and K(k) is the complete elliptic integral of the first kind.

becomes

Similarly, the time required for a non-localized particle to “traverse” the helical ripple
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— (b) Ripple-Localized Particles

Localized particles are said to be in the long-mean-free-path (Imfp) regime if the
condition 7y vesy < 1 is satisfied, where Veff = v/2¢ is the frequency with which
particles are collisionally removed from the helical ripple. Such particles thus have a
chance to complete several bounces and it becomes physically meaningful to consider
averaging over this (nearly) periodic motion. Before doing so, however, k? is explicitly
chosen as the pitch-angle variable for ripple-localized particles in place of 1 and equation

(2) is rewritten as

dr9F d¢OF d§90F dk* OF

wor Tatas T aoe T a ke - Al

The time rate of change of k% appearing in this equation may be determined from

dk> Ok dr Ok d6
& ordt 90 d

where the partial derivatives are taken at constant £& and u. The Lorentz collision

operator expressed in terms of k% has the form

2
k \’BoX @ ( Kk | OF
Li2(F)=vepr | — ) == A .
ex(F) yff(,uB_g) B ¢, Ok? (uBo ak.z)

This kinetic equation may now be time averaged over the periodic bounce motion

of particles localized in the helical ripple using the operator

1
(), = —j{dz =,
Tb ’U”

which has been chosen so as to annihilate the term (d¢/dt)(0F/0¢). Simultaneously, the
kinetic equation will be linearized; i.e., it 1s assumed that the distribution function for
ripple-localized particles may be written F = F,, + fr,rwhere F,, is a local Maxwellian
and f, the small perturbation therefrom. For toroidal stellarators in the Imfp regime the
variation of f, about its average value is small over the course of a single ripple [23] —
the dominant neoclassical transport mechanisms are adequately described if f, is taken
to be constant over this scale length. The averaging procedure is then straightforward

and the result is referred to as the ripple-averaged kinetic equation for localized particles

oF,, . Ofr afr

(F)r—prt + (B g + () 5z = (Lia(fo))r, (3)




where

(7)r = va — sind (14 (22),),

€t

(8)r = Qp + Qp ((cos 7Y + (A2 cosn)r) + Q¢ cos b (1 + ()\2),»)!

- AR e . L [AKRYD) ok (M)
k?r:Q 9 _ - T
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(£k2(fr))r = Veff (ﬁ)2 ((1 + (’\2)1") g{g & j:((ﬁ;)) (3332) ’

with a dot denoting d/dt and with

QE=%%%’, Q,,:Z—j%;’i, szg‘:—’%,
(22), = e B0 j,((’;?),
(cosn), = 1 — 2k% + %,
(A%), = % (eh f‘f")z ((2k2 - 1)%2—)) k(1 - k?)) .
(¥ cosm) = (1 = 2R3 + 2L,
A(k?) = 8(E(k) - (1 - k)K (k) A'(K?) = a‘gi’f) = 4K(k),

where K (k) and E(k) are complete elliptic integrals of the first and second kinds,
respectively. It is also common in the literature to refer to equation (3) as the bounce-

averaged kinetic equation. The reader’s attention is directed to the following points.

e The averaging procedure yields (v|)» = 0, thereby eliminating the rapid motion along
B from the description of localized particles. Odd functions of 7 also vanish (e.g.,
(sinn), = 0).

e While carrying out the averages it may be assumed that By/B = 1. Corrections to

this assumption are O(e, e, ) and may therefore be neglected.
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¢ Terms in the ripple-averaged drift equations which contain (A?), and/or (A%, /en
are also O(e; ) and are likewise usually ignored. They have been retained here because
they have counterparts in the drift equations for non-localized particles which are non-
negligible (as will be shown below); this assures continuity of these terms at the k2 = 1
boundary.

e In stellarators, the ambipolarity constraint on the particle fluxes generally yields a
potential for which ¢®/eT is O(1), €T being the kinetic energy of thermal particles.
It then follows that €45 /Q) is O(1) for thermal particles as well, i.e., the two terms
appearing in (k2), are similar in magnitude. This is mentioned here because the term

containing (g has been overlooked in the previous calculations [19,20].

— (c) Non-Localized Particles

The ripple average introduced in the preceeding sub-section is performed over the
periodic bounce motion of localized particles. Such a procedure is clearly impossible
in the case of non-localized particles; instead the kinetic equation is averaged over the
time required by non-localized particles to traverse a single helical-ripple well. This
process results in two kinetic equations, one for particles with parallel velocity in the

forward direction (u/v; = 1) and the other for particles moving in the backward direction

(u/v) = —1). In either case, the ripple average is defined as
1 [ Rdy =z
@=r [ EE
Tt J—z |E.¢— —pl u

Once again, k? will be used as pitch-angle variable instead of x, although for numerical
purposes it will prove more convenient to employ its reciprocal, (* = 1/k?. The time

rate of change of (* is given by

k"

det _0¢tdr  9Ctd6 g di?
dt ’

=5 ____*22
# e sm- &)

and the collision operator becomes

2.\’ Bo A 8 (., (% 6F>
sl e R el A .
L) =vers (#Bo) B €, 0¢? ¢ uBo ~ 9¢?

Again coupling the averaging procedure with the linearization of the distribution func-

tion about a local Maxwellian, one obtains the ripple-averaged kinetic equation for

non-localized particles traveling in the forward direction
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where

(r) =.vd £ sing (1 - (,\2}).

€t

(B)f = % + Qe+ Q0 ((cosn) + (\? cosn)) + Q4 cos b (1 - (/\2)).
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ey 4B\ 8f,  2B(C) &
(Loalfpl) = —vess (#Bo) ((”(’” Ix(c))ae CEO (6@‘2)2)‘

with
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k) IEQ)
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In the same manner, the ripple-averaged kinetic equation for non-localized particles

with parallel velocity directed backwards is given by

., OFy
s

where the expressions for () and (C?), are identical to those of ()5 and (C?); with

+ 002 + (gl = (L) 5

the exception that (u) must be replaced with —(u). Otherwise, in all the preceeding
expressions, the lack of an f or b subscript on a ripple-averaged quantity indicates that

that quantity is identical in both the forward and backward kinetic equations.
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As in the previous case for localized particles, ripple averaging has eliminated
quantities which are odd functions of . On the other hand, the parallel motion along
B (with averaged velocity (u)) of non-localized particles remains and is responsible for
the dominant contribution to (é)f,b and (C?)54. It is also to be expected that terms
containing (A?) and (A*) are of more importance in the drift equations for non-localized

particles and, indeed, using the definition of £? to obtain the expression

together with small-argument approximations for the complete elliptic integrals, K'({) ~
(7/2)(14¢?*/4) and E(¢) = (7/2)(1 — (?/4), one finds that near (? = 0, (A2) and (A%)
are both O(1).

III. THE METHOD OF SOLUTION

The solution of the ripple-averaged kinetic equations (3)—(5) is undertaken using
common numerical techniques, so that its description here may be confined to several

specific points. First, the 8 dependence of f is expressed in Fourier series,

P\ e [ (O o (S70)
fr]=5= S i) | cosmb+ Y | STV | sinmé (6)
fb m=0 Cgm)((:z) m=1 Sl(;m)(c2)

being assumed for the ripple-localized, forward and backward distribution functions,
respectively. In practice, the infinite series must be truncated at an appropriate
value of myqz, vielding a system in which three sets of 2m,,,; + 1 coupled ordinary
differential equations are to be solved simultaneously. It is to be hoped, of course, that
a small number of Fourier harmonics is sufficient to accurately describe the perturbed
distribution function (this hope is put to the test in Section V by investigating the
convergence properties of the solution with increasing mmaz).

Solutions for the unknown Fourier coefficients are to be sought using discrete
(finite difference) techniques. It is therefore necessary to represent the solution domain
by a finite number of k? and (? values (designated k} and (?, respectively, where
3. = 1,23, .. ny and j = 1,2,3,...,n¢), referred to as nodes. The spacing between
nodes is allowed to be non-uniform; this is useful at small values of » where solutions
tend to be localized about k% = 1, allowing one to increase the density of nodes in
this region while leaving the remainder of the domain more sparsely populated. For

the sake of simplicity, the choosing of nodes is done so as to be appropriate in each
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of the three solution regions (localized, forward and backward), i.e., ny = n¢ = n,
k? = (? fori = 1,2,3,...,n, where the value of n is determined by the particulars of

the given problem. Regardless of the value of n, the nodes are always chosen so that

.2
JI‘i+1

of nodes satisfies §;1; < 6§; < §maz. Where §; = k?H —k? = (?H — (? and 6,4, is the

>k} (CHy > ¢F) with k = ¢ = 0 and k2 = (2 = 1. Furthermore, the spacing

maximum spacing allowed (for all results presented here é,,,, = 0.04. i.e.. the limiting
case for sufficiently large values of v is given by k2 = (? = (i — I — R
Differentiation is carried out using the discrete approximations of the finite difference

formulae (second-order accuracy)

of
a — di+1f,'+1 — (d,‘+1 + di—])fi + di—lf:'—]
1=2,3,4,...,n—-1
o*f
) = git+1fix1 — (giv1 + gi-1)fi + gi-1 fim
I=I;

with f; = f(z;) and where

6i_1 ‘_5i
dit1 = ———, di-1 = ;
B 0 01 YT 818+ 6imy)
git1 = 6-+] = 2dit1(dig1 + dia), gim1 = —5— = —2di—1(dig1 +dio1),

where one must substitute f = f, z = k* or f = fs4, ¢ = (* as appropriate. It is
easy to verify that these formulae reduce to the usual expressions for central differences
when 6; = 6;_;.

For the i = 1 nodes, forward differencing is employed. Here, far from k% = 1, the

node spacing is always uniform and given by émar so that one has

of _ =3h+4fa— f3.

g I:[}h 26172&1

No expression for 82f /9x? is necessary since the term multiplying the second derivative

vanishes at both k2 =0 and (? = 0.
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The physical requirement that the distribution function as well as its derivative
with respect to the pitch-angle variable be continuous at k2 = 1 leads to the following

set of boundary conditions at the i = n nodes,
fr(k*=1) = fs(k*=1),
frk*=1) = fi(k*=1),

2 Ofr
k2

L2l

ofs
+
k= OC?

k= OC

_01

where differentiation at k? = 1 is performed using the backward-differencing formula

Q_f; . 611—1
Oz |,y  bn—2(bn-1 + bn=z)

(611—] + 611—2)
6n—] 611—2

(2611—1 + 611—2)
On—1(6n—1 + 6n—2)

A Jfo—1 + y

These boundary conditions determine the solution for the perturbed distribution func-
tion to within a constant, independent of both # and k?. This constant is ascertained

from the additional requirement

fdv; P fdvf B & fdvb fi =i, (7)

where the differential volume elements are given by dV, = J, dr df dk dk? and dVis =
Jgp dr df dk d(?, and

m3/2

k112112
Jr = 167rR (”BO) “h K(k),
K

ﬂBo) 3/2 1/2Eh1/2

Jy=Jy=8arR (C2’f 3/2 K(¢)

are the appropriate ripple-averaged Jacobians. This requirement is equivalent to the
conservation of the total number of particles enforced by the FLOCS code at each step
in its time-evolution scheme (a point clarified further in the following section). Given
the Fourier ansatz of equation (6) for the perturbed distribution function, equation (7)

may also be written

] dk? J,C® + / d¢? (J¢C + 1,0, =

0



As input, GSRAKE requires a description of the model magnetic field (e.g., Ro,
By, +, €, €4, O¢/dr, Oe;/Or) and plasma parameters (e.g., T, g, v). With this
information, an appropriate number and spacing of nodes is chosen. The value of
Mmaz 18 also an input, limited only by the available computer memory. GSRAKE
generates automatically the equations for each Fourier harmonic cosmé and sinmé
(m = 0,1,...,Mma;) in each of the three solution regions, using the finite difference
formulae and boundary conditions described above. A system of N equations in N
unknowns results — where N = 3n(2mmaer + 1) — which is solved by Gaussian
elimination. This procedure is straightforward but for a single exception. Although
in principle it is possible to determine the solution constant using equation (7) after
matrix inversioﬁ, numerical stability is insured only if this equation is explicitly included
as one of the original N; it replaces the third boundary condition in the m = 0 set of

equations.

IV. A BRIEF OVERVIEW OF FLOCS

The FLOCS code solves essentially the same set of averaged kinetic equations as
GSRAKE, so that a comparison of results from the two codes is a logical undertaking.
FLOCS has been described thoroughly elsewhere [20], but a short overview is necessary
here to point out similarities and differences in the two codes.

FLOCS solves the time-dependent ripple-averaged kinetic equation by central dif-
ferencing (second-order accuracy) on a 2D mesh (6, k?) using an explicit time-relaxation
scheme. The variable k2 is used for both localized and non-localized particles; a multi-
mesh approach (each mesh with successively coarser spacing in k?) makes it possible to
handle 0 < k% < 100 when so desired. To investigate lmfp particle and heat transport,
however, it is usually deemed sufficient to consider the region 0 < k* < k% with a single
mesh (where k2 > 1+ €//e). The drift equations are those given here in Section II

with the following exceptions and/or qualifications.

e It is explicitly assumed that € = ¢; = 7/ Rp.
e For localized particles it is assumed that x = pBg and terms which are O(e;, €,) are
ignored.

e As was pointed out in Section II, the expression for (k?), lacks the term containing
Qg. (This oversight occurred due to the premature approximation R = Ry; the correct

derivation is given here in the Appendix.)
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e For non-localized particles, the perpendicular drift terms are considered negligible
compared to the rapid motion along B; explicitly, (G)f = ()[R, (9)5 = —+(u)/R,
and (i.cg)f,b = —(€:/2€p)sin (9.)_,«,;,.
One further difference is the presence of a “fictitious drift” — given by —Qp(e;/2€p) cos 8
— in the FLOCS expression for (6),. This term is introduced for numerical purposes to
assure that the divergence of the phase-space flow is zero, allowing the kinetic equation
to be written in conservation form and thereby insuring the numerical conservation
of particles at each time step. An additional assumption is that dey/0r = 2¢,/r (é
standard analytic approximation for £ = 2 stellarators) and thus Qn(e;/2¢,) = Q..
Written explicitly, FLOCS therefore has (H)T = Qg + Qu(cosn), — Qs cosh. Given the
assumptions employed in its linearization, the kinetic equation is valid throughout the
entire Imfp regime in either of the two limits, Qg > Q; or Q; > Q,. In both of these
cases the additional fictitious drift term leads to an O(e) change in (), and therefore
represents no limitation on the validity of FLOCS. (This modification to (6), is made
necessary by the ordering of the kinetic equation which eliminates r as a variable from
the problem — see the Appendix for a complete discussion of this topic.) |

The phase-space flux of particles must also be conserved at the k¥? = 1 boundary,
requiring that J.(k2), f, = J;(k?) s fs+Js(k?)s fo. This is handled in FLOCS by defining

a trapping probability so as to be consistent with the flow velocities on either side of the

boundary
T k? r
pi = lim L
Bl Fp(kt)
To maintain consistency, one must then artificially require Jb(k2)b = -an(fc2)f(1 —pt).

As the trapping probability is very small, this “adjustment” is inconsequential to the
physics of the problem; its purpose is numerical, to satisfy the divergence condition and
allow finite differencing of the kinetic equation “across” the k* = 1 boundary. (Note
that the GSRAKE equivalent of this condition, Jr(k2>rfr+Jf(éz)fff+.jb(c.2)bfb = 0,18
automatically satisfied at k? = 1 since the complete expressions for the drift equations
have been retained.)

FLOCS input consists of the simulation parameters, the specification of an appro-
priate mesh configuration and the assumed values of thg solution at each mesh point.
The distribution function is then allowed to evolve iteratively over a number of discrete
time steps until a steady-state solution is reached; the mesh values of the previous step
are used to obtain finite-difference approximations for the derivatives with respect to ¢

and k2. In the inaugural run, the distribution function is initialized as a Maxwellian at

14



every mesh point; subsequent runs employing the same mesh may be initialized with
a previous solution (this usually accelerates convergence, especially if the simulation
parameters are not too dissimilar). In either case, strict particle conservation is enforced
at each time step, stipulating that the non-Maxwellian portion of the solution be neither
a source nor a sink of particles. The GSRAKE equivalent of this requirement is given
in equation (7).

Numerical stability constraints set a limit on the maximum time step which can
be tolerated in an explicit scheme. At the more collisional end of the lmfp regime
this limit is dictated by the numerical propagation speed of the diffusive flow, but
for small values of v the drift motion becomes the determining factor. In the former
case, computational time is independent of the collision frequency; in the latter it

is proportional to v~!.

An additional consideration is the increasing localization of
the distribution function observed with decreasing v, demanding ever-finer meshes to
obtain the necessary resolution. As a consequence, FLOCS can become prohibitively

time consuming for studies of neoclassical transport deep into the Imfp regime.

V. COMPARISON OF RESULTS

The analytic theory of lmf;‘u neoclassical transport in stellarators exists as a patch-
work of results, each one valid for a particular set of assumptions. Broadly speaking,
these assumptions concern the relative magnitudes of v.sy and {2y = Qg+ Qvp. where
vess is the effective collision frequency and §2p the poloidal precessional frequency of
localized particles due to the ExB and VB drifts. Three limiting cases have been
investigated: (1) vefs > §lg, the more collisional end of the Imfp regime where the
relative magnitudes of Qg and Qvp are unimportant; (2) vess < Qg, Qg > Qvp; and
(3) vesr < Q. g = 0 with the additional stipulation e, > € (the case €, < € leads
to loss-cone behavior [24] and is not considered here). Numerical studies have been
heretofore confined to (1) and (2) since these two cases are generally considered to be
most relevant to present and future stellarator experiments.

GSRAKE solutions for the perturbed distribution function are presented in this
section which have been chosen so as to consider each of these limiting cases in turn.
Plots of the monoenergetic diffusion coefficient as a function of collision frequency are
also provided, illustrating the use of GSRAKE for determining neoclassical transport
coefficients. Where possible, comparisons are undertaken with the results of other

numerical approaches and with the expectations of analytic theory.
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A classical £ = 2, p = 12 stellarator field with reactor dimensions is used for
illustration purposes. Other parameters for the base case are: major radius Ry = 20 m.,
plasma minor radius a = 2 m, magnetic field on axis By = 4 T. The flux surfacer = 1 m
1s considered, with rotational transform + = 1.47 and with ¢ = 0.05, ¢, = 0.063.
Conforming to the assumptions used in the FLOCS code, € = ¢, €,  r2, and thus
Oe/Or = 0.126 (but de/dr = —0.05 so as to mimic the fictitious drift present in
FLOCS). Results for particles with a kinetic energy corresponding to T = 12 keV are
presented. For the large electric field cases it is assumed that Qp = 1875 s~!; in
comparison 0, = £378 s™! and Q; = F150 s™! (where the upper sign is for protons
and the lower sign for electrons). For the Qg = 0 results the major radius is increased

to Ry = 40 m, leading to the changes e = 0.025 and Q; = F75 s~ 1.

— (a) The Distribution Function

Before considering the specific details of individuai solutions, some general com-
ments are in order which pertain to all the examples presented here. For GSRAKE
simulations, a value of M., must be chosen at which the Fourier representation of f,
given in equation (6), is then truncated. This choice presents the usual dilemma; the
accuracy of the solution improves with increasing m,,, but computational speed suffers
greatly. These aspects are investigated here by comparing the solutions at different
values of M e, for C(®, SN and C (1')_. the Fourier coefficients of the primary poloidal
harmonics. (Poloidal harmonics which appear in the ripple-averaged drift equations are
considered “primary” since any solution of the kinetic equation must contain at least
these harmonics.) The results for S(!) are of particular interest since they alone are
responsible for the neoclassical particle and heat fluxes (due to the sin 6 dependence of
the radial drift velocity). Results from the FLOCS code are provided for comparison
in each case as well. These have been Fourier decomposed so as to conform with the
GSRAKE ansatz for the distribution function given in equation (6). The CPU time
consumed in the course of a simulation, Tcpy, is an important measure of a numerical
solution’s efficacy and is provided here for each example. All results were obtained
using a CRAY Y-MP computer of the Cray Research Corporation. As a final comment,
it should also be mentioned that the FLOCS output plotted for C{%) has been “shifted”
by an amount AC'9 to compensate for the neglect of the portion of velocity space
k% > k2. (This shift is without physical consequences and has been done here only to

simplify visual comparison of the numerical results. )
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Figure 1 presents the solution of the ripple-averaged kinetic equation for protons
with vesy = 5625 s™!, illustrating the case Vess > Slg. The left half of each plot
depicts the results for localized particles (0 < k? < 1), the right half for non-localized
particles (1 > ¢? > 0). GSRAKE curves are given for mma; = 3 (solid HBE), Winee = 2
(dotted line) and mq, = 1 (dashed line). These three curves are essentially identical.,
indicating that accurate results are obtained even when the Fourier series for the
perturbed distribution function are truncated at the m = 1 terms. FLOCS output
is shown by the solid circles (o) for f; and f; and by the open circles (o) for f;. These
particular FLOCS results were obtained on a single mesh with ng = 20 and ny = 60
(with mesh spacings A8 = 27/ng and Ak? = k2 /ny) for k2 = 3 (hence FLOCS output
for non-localized particles is confined to the range of pitch-angle values 1 > (2 > 1/3).

An analytic solution of the ripple-averaged kinetic equation for localized particles
may be derived in this case as well, employing an ordering scheme in the small quantity

Q¢/vess. The lowest-order solution is

. ud i o 1 . aFm -
= Ve (k 1)siné v + K(6),

where K is a constant with respect to k2, to be determined by the boundary conditions
at k? = 1. In the literature it is often a,fgued that one may assume fy = f; = 0 in the
Imfp regime, the so-called M amwel’lmn approximation, and hence K = 0. Alternately,
one supposes the radial drift displacement of non-localized particles to be negligibly
small in the Imfp regime — the zero-banana-width approximation — and finds solutions
for fr and f, which are even functions of 6 [25]. On the basis of either assumption, one
obtains the boundary condition S (k2 = 1) = 0.

Checking these analytic approximations against the numerical results of figure 1,
however, it must immediately be concluded that the agreement is poor. Although S
is indeed a linear function of k2, its value at the k2 = 1 boundary is far removed from
zero. Further, the solutions for the forward and backward distribution functions are by
no means even functions of #, much less Maxwellian. In fairness, it should be pointed
out that the current example has 7y veff = 1/3, and is thus in the Imfp regime but
at its collisional end. To investigate whether the analytic approximations are more
appropriate deeper into the Imfp regime, the identical set of parameters is reconsidered
for electrons (7p vess < 0.01); results may be found in figure 2. In this example the
analytic expectations for S are verified by the numerical results. The solutions for
non-localized particles are again non-Maxwellian but are, to good approximation. even

functions of 6.
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Figure 1. Numerical solutions of the ripple-averaged kinetic equation are presented
for the m = 0 and m = 1 Fourier coefficients of the perturbed distribution function
of protons. The left half of each plot depicts the results for ripple-localized particles
(components of f,), the right half for non-localized particles (components of f; and
fs). The simulation parameters are vq = 150 m/s, vess = 5625 s7!, Qp = 1875 57!,
Q, =378 s~ and Q, = —150 s~!. GSRAKE solutions are shown for mmqr = 3 (solid
line, 7cpy = 0.95 s), Mmar = 2 (dotted line, 7cpy = 0.40 s) and mpe: = 1 (dashed
line, 7cpy = 0.12 s). The number of nodes in each case is n = 27. FLOCS results
were determined using a single mesh with ng = 20, ny = 60 and k2 = 3 and are
plotted as solid circles (o) for f, and f; and as open circles (o) for f5. An offset of
AC® = 3.0 x 10~* has been added to the FLOCS solution for C®) to compensate for
the neglect of the portion of velocity space k% > k?. The computational time required

was Tcpy = 105 s.
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Figure 2. Numerical solutions of the ripple-averaged kinetic equation are presented
for the m = 0 and m = 1 Fourier coefficients of the perturbed distribution function
of electrons. The left half of each plot depicts the results for ripple-localized particles
(components of f,), the right half for non-localized particles (components of f; and
f»). The simulation parameters are vg = —150 m/s, ves; = 5625 sl Qp = 1875571,
Qp = =378 s7! and Q, = 150 s~!. GSRAKE solutions are shown for m . = 3 (solid
line, T7cpy = 1.95 s), Mmar = 2 (dotted line, 7cpy = 0.85 s) and mpmqer = 1 (dashed
line, Tcpy = 0.25 s). The number of nodes in each case is n = 36. FLOCS results
were determined using a single mesh with ng = 20, ny = 60 and k! = 3 and are
plotted as solid circles (o) for f, and f; and as open circles (o) for f;. An offset of
AC® = _1.5x10~* has been added to the FLOCS solution for C°) to compensate for
the neglect of the portion of velocity space k* > k2. The computational time required

was Tcpy = (0 s.




Approximate or assumed solutions for ff and f, are a standard feature of most
analytic theories of Imfp transport in stellarators. The results presented in figures 1 and
2 have demonstrated that such solutions are appropriate under certain circumstances
but not in the general case. Complete and accurate solutions of the kinetic equations
for non-localized particles are therefore indispensable to a comprehensive description
of neoclassical transport. Further emphasis of this point is found on examination of
the numerical solutions given in figure 1. Here, the FLOCS results were determined
using a single mesh with k2 = 3, and show clear differences in comparison to the
GSRAKE curves. The agreement is significantly improved, however, if the amount of
pitch-angle space covered by the FLOCS solution is expanded, e.g.. using seven meshes
with k2 = 90. Unfortlunately, the price paid for this improvement is high; FLOCS
computational time is increased by a factor of four in this example.

In figure 3, the collision frequency has been reduced by an order of magnitude to
consider the case vess < 2y, Qg > Qvp for protons. The favorable effect Qg has on
the confinement of deeply trapped particles is clearly exhibited in this example by a
strong reduction in the magnitude of S for small values of k2. The GSRAKE results
remain relatively insensitive to the value of m,,,, although the plots do show that
small inaccuracies are introduced into the solution if the Fourier series are truncated at
the m = 1 terms. An important rule of thumb for FLOCS simulations is also illustrated
in figure 3; distortions of the results are avoided only if the solution is a constant (or
nearly constant) function of pitch angle in the portion of velocity space excluded from
the simulation. For the current example, a single mesh with k2 = 3 is sufficient to
obtain good agreement with GSRAKE results. The reader’s attention is again drawn
to the complex nature of the solutions for f; and f, near the k* = 1 boundary, which
defy any simple analytic approximation.

Further characteristics of the numerical solutions are revealed by moving yet deeper
into the Imfp regime; an example is provided by figure 4, in which v 5 = 56.25s7!. Two
trends are discernible. First, the solution for ) becomes increasingly localized near
the k? = 1 boundary, and, second, the GSRAKE results become more sensitive to the
value of mnar used in the simulation. Nevertheless, even when considering the smallest
physically relevant values of vess, Mmmar = 3 is sufficient to obtain accurate results
\\'ith GSRAKE, and computational times never exceed five seconds. The increasing
localization of the distribution function with decreasing collision frequency has more
serious consequences for FLOCS simulations, however. In the current example, erratic

fluctuation of the solutions for S}l) and Sél) is observed near k% = 1, even though the
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k? resolution has been increased by choosing a mesh with ny = 90 (the fluctuation is
much more pronounced for n; = 60 and affects the accuracy of the results accordingly).
Further localization of the solution at smaller » demands yet finer meshes and ultimately
leads to excessive values of Tcpy.

The final comparison of solutions undertaken here is depicted in figure 5 as an
example of the case very < Qg, Qg = 0. The major radius used in these simulations has
been increased to Ry = 40 m as a means of better satisfying the requirement ), > Q.
Even so, the magnitude of the solution for localized particles is perhaps greater than
one would wish, given the assumption f, < Fj, which underlies the derivation of the

ripple-averaged kinetic equation.

— (b) The Monoenergetic Diffusion Coefficient

Once the solution for the perturbed distribution function has been determined, it

is straightforward to calculate the associated neoclassical particle and heat fluxes

T 9 \1/2 peo K1/2 dF.,
[Q] = (F) /0 an Lw] Dls)

where the monoenergetic diffusion coeflicient is given by

e vg € [€p\1/2 . 2 o(1) ﬂBO 3/2 i uBg A(kz)
D =—2= () fod" il =y (e T==g

va € fen\Y2 [ o o), o) [ #Bo YA pBo .. .
- pl (2 /D a8+ (2) (K@ +2a550E0).

The terminology “monoenergetic” is employed here to distinguish D(x) from the “true”
diffusion coefficient, which, by convention, multiplies the density gradient in the energy-
integrated expression for the particle flux. The utility of D(x) lies in the fact that it
is a quantity which may be easily determined from a number of different numerical
simulations and thereby provides a convenient basis for comparison. In what follows,
such comparisons are provided for results from GSRAKE, FLOCS, a Monte Carlo
simulation of neoclassical transport and the DKES code. Prior to this undertaking,
however, a short digression is necessary to provide a brief description of the latter two
numerical approaches.

Orbit-following Monte Carlo codes have been traditionally among the most widely
used numerical tools for investigating neoclassical transport in stellarators. Such codes
exist in considerable number, of which the references given here [13-18] represent only

a small sample. The Monte Carlo results presented in this paper were determined by a
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Figure 3. Numerical solutions of the ripple-averaged kinetic equation are presented
for the m = 0 and m = 1 Fourier coefficients of the perturbed distribution function
of protons. The left half of each plot depicts the results for ripple-localized particles
(components of f,), the right half for non-localized particles (components of f; and
f3). The simulation parameters are vq = 150 m/s, vesfs = 562.5 s71 Qp = 1875571,
Qp =378 s7! and Q; = —150 s~!. GSRAKE solutions are shown for m ., = 3 (solid
line, 7cpy = 1.50 s), Mmar = 2 (dotted line, 7cpy = 0.65 s) and mmer = 1 (dashed
line, 7cpy = 0.19 s). The number of nodes in each case is n = 32. FLOCS results
were determined using a single mesh with ng = 20, nx = 60 and k2 = 3 and are
plotted as solid circles (o) for f, and fs and as open circles (o) for f;. An offset of
AC® = 2.5 x 10~3 has been added to the FLOCS solution for C®) to compensate for
the neglect of the portion of velocity space k* > kZ. The computational time required

was TcpU — 105 s.
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Figure 4. Numerical solutions of the ripplé—averaged kinetic equation are presented
for the m = 0 and m = 1 Fourier coefficients of the perturbed distribution function
of protons. The left half of each plot depicts the results for ripple-localized particles
(components of f;), the right half for non-localized particles (components of f; and
fs). The simulation parameters are vg4 = 150 m/s, v sf = 56.25 sl O = 1875571,
Qp =378 s and Q; = —150 s™!. GSRAKE solutions are shown for mmq, = 3 (solid
line, Tcpy = 2.20 8), Mmaz = 2 (dotted line, Tcpy = 0.95 s) and mya; = 1 (dashed
line, 7cpy = 0.28 s). The number of nodes in each case is n = 38. FLOCS results
were determined using a single mesh with ng = 20, ny = 90 and kﬁ = 3 and are
plotted as solid circles (o) for f, and f; and as open circles (o) for f;. An offset of
AC® = 8.5 x 10~2 has been added to the FLOCS solution for C'°) to compensate for
the neglect of the portion of velocity space k? > k2. The computational time required

was Tocpy = 485 s.
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Figure 5. Numerical solutions of the ripple-averaged kinetic equation are presented
for the m = 0 and m = 1 Fourler coefficients of the perturbed distribution function
of protons. The left half of each plot depicts the results for ripple-localized particles
(components of f,), the right half for non-localized particles (components of f; and fj).
The simulation parameters are vg = 75 m/s, vess = 126571, Qg = 0, 2, = 378 s7! and
Q, = =75 s7'. GSRAKE solutions are shown for mu,., = 3 (solid line, 7cpy = 1.70 s),
Mmaz = 2 (dotted line, 7cpy = 0.70 s) and Mmqer, = 1 (dashed line, 7cpy = 0.21 s).
The number of nodes in each case is n = 34. FLOCS results were determined using
a single mesh with ny = 20, nx = 60 and k2 = 3 and are plotted as solid circles ()
for f, and ff and as open circles (o) for f;. The computational time required was

TCPU = 135 s.



simulation which offers the user three choices for the description of collisionless particle
orbits — the numerical integration of a complete set of guiding-center equations of
motion (most accurate), the iterative conservation of adiabatic invariants (most efficient
computationally), or a “hybrid” combination of these two [18]. All results given here
were obtained using the first of these choices. A simulation begins with the launching
of monoenergetic test particles on a given flux surface; the initial values of ¢, 6 and
pitch angle for each particle are chosen randomly. The particle orbits are then followed
numerically over a large number of discrete time steps. After each step the particles
undergo pitch-angle scattering according to a numerical algorithm which simulates the
effects of the Lorentz collision operator. Statistical estimates of the monoenergetic
diffusion coefficient are ultimately determined, based on the final radial positions of all
test particles.

DKES is a numerical solution of the linearized drift kinetic equation for arbitrarily
complex magnetic-field configurations [21,22] and, as such, avoids all the assumptions
and approximations which are necessary to justify ripple averaging. The solution
employs a variational principle in which the trial functions are expanded in a Fourier-
Legendre series. Upper and lower bounds for the neoclassical transport coefficients are
determined which converge monotonically as the number of Fourier-Legendre harmonics
1s increased. Within the constraints of computer time and memory it is thus possible
to determine these quantities to an arbitrary degree of accuracy. In common with the
other numerical simulations, collisionai processes are modeled using the Lorentz collision
operator. For the current purpose of comparison, DKES does have one shortcoming,
however. The method of solution requires a self-adjoint form of the kinetic equation,
which is achieved by ignoring the VB drift in the equation for df/dt; DKES is thus
incapable of considering the limiting case v sf < 29, Qg = 0.

Figure 6 presents results from the four numerical simulations for the monoenergetic
diffusion coefficient of 12 keV protons as a function of the normalized collision frequency
vesr/Qp. GSRAKE results are given by the solid, dotted and dashed curves for mpax
values of 3, 2 and 1, respectively. Each of these curves is composed of 100 individual
data points (20 points per decade). FLOCS output is shown by crosses (+), statistical
estimates of D from the Monte Carlo simulation are given as solid circles (o) and DKES
results are plotted as open circles (o). Also shown for comparison by the dot-dash line
is an analytic estimate for the monoenergetic diffusion coefficient, D = D; + Dy, where

o\ 2/3
D, = (Di,/g* " D“”')

bp

30



.001 0.01 0.1 1 10 100

1 1 Illllll 1 1 lllllll 1 1 IIILlll 1 1 IlllJli 1 L1 11111
‘—_-E Og© E_ o
~ . . C
O ] B . e
s 1 2 Tl
s .|
e -
O 3 W'
E 2
() . N
5. 5
o ¥ e
I | IIIII‘IE 1 1 IIII”I T lTIIIlII 1 Illlllll T T T TTTTT
.001 0.01 0.1 1 10 100

Veff/ (g

Figure 6. The monoenergetic diffusion coefficient of 12 keV protons is plotted as
a function of normalized collision frequency for an { = 2, p = 12 stellarator with
Ry =20m, B =4T,e=¢ = 0.05 e = 0.063, + = 1.47 and Qg = 1875 s~ !.
GSRAKE results are shown for mpy,; = 3 (solid line), mpma, = 2 (dotted line) and
Mmar = 1 (dashed line). Each of these curves consists of 100 data points (20 points
per decade), requiring total CPU times of 180, 79 and 25 seconds, respectively. Results
from FLOCS are shown as crosses (+) — 9 data points, total 7cpy = 4800 s. Statistical
estimates of D from a guiding-center Monte Carlo simulation are given as solid circles
(o) — 10 data points, total Tcpy = 1.8 x 10* s. DKES results are plotted as open
circles (o) — 13 data points, total 7cpy = 2350 s. An analytic approximation for D

given in the text is shown by the dot-dash line.
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In these formulae, @ = ¢By/m is the gyrofrequency and Fy = e+ 2ex — /264
is the fraction of pitch-angle space in which toroidally blocked pafticles exist.

The preceeding expression for D represents an attempt to patch together various
results from the analytic theory of neoclassical transport in general toroidal devices, Dy,
with those describing the losses due specifically to particles localized in the stellarator’s
helical ripple, Dy,. It must be considered a rough approximation at best, D; composed of
the Pfirsch-Schliiter (Dps), plateau (D,) and banana (D;) diffusion coefficients [26,27],
and D}, cobbled together from results derived for vessr > Qg (D1yy), vess S Qe (D7),
and vefr < Qp (Dy) [1,4,6,7]. In particular, the usual analytic approximations were
demonstrated in figure 1 to be inadequate at the more collisional end of the Imfp regime;
as a consequence, the analytic theory underestimates D substantially for the range of
colﬁsion frequencies 1 < v.;5/Q0g < 10. On the other hand, the analytic expression

exhibits reasonably good agreement with the numerical results at smaller values of v.
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A few words must be said regarding the accuracy of the numerical results and
the attendant computational times as these two are inextricably linked. This becomes

particularly evident deep into the lmfp regime and concerns each of the numerical

approaches to a various degree.

e For GSRAKE, the number of nodes must be made larger to resolve the increasing
localization of the distribution function with decreasing v. Simultaneously, the value
of M4, must also increase to provide the coupling to higher-order Fourier harmonics
necessary to account accurately for the collisionless variation of the pitch-angle variable.
Illustrated quantitatively using the curves plotted in figure 6 as an example, the
calculation performed at vess/Q0g = 1 required 7cpy = 0.15 seconds for Mmmar = 1:
larger values of mm,q, may be dispensed with as they yield results for D which differ
only by tenths of a per cent. At verf/S2E = 1073, however, mmpmar = 3 is necessary
to achieve a similar coincidence of results and the simulation consumes TCPU = 3.8
seconds.

¢ The computational efficiency of FLOCS depends strongly on the mesh configuration
which is chosen. Coarser meshes are to be favored over finer — not only do they have
fewer mesh points, they also allow larger time steps. The localization of the distribution
function observed in the extreme Imfp regime is not to be resolved with such meshes,
however, and the computational efficiency suffers accordingly. The set of results given
here is typical; 7c py = 3450 seconds — more than 70 per cent of the total computational
time — is required for the two most collisionless data points. One final note concerning
the FLOCS results: each calculation was initialized with the solution of a neighboring
data point and terminated when the computed value of D fluctuated by less than one
per cent over a series of consecutive time steps.

e A Monte Carlo simulation consisting of N test particles results*in as many discrete
values for the monoenergetic diffusion coefficient, designated D; where j 1s the particle
index. By the definitions of standard statistics these values have a mean and variance

of

N
- <> b, and N_lz(D = D)
N 2

respectively. As the notation suggests, the mean provides a statistical estimate of the
monoenergetic diffusion coefficient; the relative error associated with this estimate is
given by o(Dv/N)~'. An arbitrary level of statistical accuracy is thus theoretically
possible if the sample of test particles is made large enough. The practical restriction

of finite computer resources is a serious constraint, however, especially deep into the

33




Imfp regime where the computational time associated with each test particle increases

1

as v~ . For the Monte Carlo results of figure 6, the relative errors lie in the interval

0.20 > o(Dv/N)~! > 0.05 and the computational times for a single simulation are as
large as 8200 seconds and as little as 40 seconds; the greater value in each case applies
to the most collisionless data point while the lesser value is typical of computations at
large v.

¢ DKES simulations_ determine upper and lower bounds for the monoenergetic diffusion
coefficient; the results given here are the averages of these two values. The degree
to which these bounds converge is a strong function of collision frequency, worsening
with decreasing v. This may be amply demonstrated using examples from the data set
plotted in figure 6. The calculation at v.s¢/Qr = 1.6 was carried out using 55 Fourier
modes and 80 Legendre polynomials to describe the solution and consumed 7cpy = 2.1
seconds; the upper and lower bounds are identical to within considerably less than one
per cent. At vess/Qp = 8 x 1072 the upper and lower bounds differ from the average
value by twenty per cent in spite of the fact that 325 Fourier modes and 210 Legendre
polynomials were employed in the computation, requiring 7c py = 710 seconds.

A ripple-averaged formalism is physically meaningful only for the description of
particles which find themselves in the Imfp regime, i.e., particles which satisfy either
Ty Vefs < 1 or Tyvefp < 1; for the parameters of figure 6, this translates into the
requirement v.ss/S0p < 10. In some instances — the current results provide an
example — solutions of the ripple-averaged kinetic equation yield reasonably accurate
results for D in considerably more collisional cases, as well. Such instances, however,
must be considered largely fortuitous; non-localized particles dominate the transport
at large v and their kinetic equations are essentially those of an axisymmetric device,
albeit Wifh the “unusual” pitch-angle variable, k2.

This series of numerical computations has also been carried out for 12 keV electrons
and the results are depicted in figure 7. The relative contribution D; makes to the total
monoenergetic diffusion coefficient is greatly reduced for electrons; in the absence of very
large electric fields one must therefore expect a significant range of collision frequencies
over which D;/, scaling will be observed, and this is indeed the case for the present
example. It will be noticed that results from the “3-dimensional” codes (Monte Carlo
and DKES) lie perceptibly above those of GSRAKE and FLOCS in this 1/v regime.
The discrepancy is largely a consequence of finite «/p effects which are “lost” to the
latter codes through ripple averaging; the differences disappear, for example, if the

Monte Carlo and DKES simulations are repeated for p = 60. The properties of the
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Figure 7. The monoenergetic diffusion coefficient of 12 keV electrons is plotted as
a function of normalized collision frequency for an ¢ = 2, p = 12 stellarator with
Ry =20m, By =4T,e=¢ = 005 ¢ = 0.063, + = 1.47 and Qg = 1875 s~.
GSRAKE results are shown for mmye: = 3 (solid line), mpqe; = 2 (dotted line) and
Mmazr = 1 (dashed line). Each of these curves consists of 100 data points (20 points
per decade), requiring total CPU times of 158, 70 and 22 seconds, respectively. Results
from FLOCS are shown as crosses (+) — 9 data points, total 7cppy = 3100 s. Statistical
estimates of D from a guiding-center Monte Carlo simulation are given as solid circles
() — 10 data points, total Tcpy = 1.3 x 10* s. DKES results are plotted as open
circles (o) — 14 data points, total Tcpy = 2370 s. An analytic approximation for D

given in the text is shown by the dot-dash line.




0.1 1 10 100 1000 10°

1 1 llIIIII 1 1l||III| 1 llllllll 1 lllllllt 1 Lt 11111

. ;

o r

: C

n 7] R
et .
O 3 E ©

& -

O - i
3+ L5
=8 F o

T IIIIIII; i IIIIIIII 1 Iillllll. 1 IIIIIII] 1 IIIIiI.I—

0.1 1 10 100 1000 10°

14

Figure 8. The monoenergetic diffusion coefficient of 12 keV protons is plotted as a
function of collision frequency for an { = 2, p = 12 stellarator with Ry = 40 m,
By =4T,e=¢ = 0.025, ¢4 = 0.063, + = 1.47 and Qg = 0. GSRAKE results are
shown for mmaer = 3 (solid line), Mmmymar = 2 (dotted line) and Mmmqr = 1 (dashed line).
Each of these curves consists of 100 data points (20 points per decade), requiring total
CPU times of 182. 80 and 25 seconds, respectively. Results from FLOCS are shown as
crosses (+) — 10 data points, total 7cpy = 3400 s. Statistical estimates of D from a
guiding-center Monte Carlo simulation are given as solid circles (¢) — T data points.
total 7cpy = 3070 s. DKES results are plotted as open circles (o) — 4 data points,
total 7cpy = 8.4 s (note: for Qg = 0, DKES simulations must be confined to the range
(;f collision frequencies vegs > §0;). An analytic approxifnation for D given in the text

is shown by the dot-dash line.
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numerical computations with respect to accuracy and CPU time are very similar to
those obtained previously for protons.

Finally, numerical results are presented in figure 8 for a set of simulation parameters
which include the assumption Qg = 0. In this case only GSRAKE and FLOCS are
capable of treating the entire Imfp regime — the limitations on DKES in this respect
have been stated earlier; the Monte Carlo method fails at low v because the test particles
do not remain sufficiently localized to allow an accurate statistical estimate of D. In
the analytic expression for the monoenergetic diffusion coefficient, the helical-ripple

contribution is now given by

where

Dyp=-"—(va—) &~ D, =2 1/2
= 6 \'¢ € |20’ yE €82 RS

are the expected results in the so-called superbanana-plateau and superbanana regimes,
respectively [1,4]. This set of parameters also provides clear confirmation that the use
of the ripple-averaged kinetic equation must be confined to the Imfp regime (v < 1000
here); this is always especially evident in stellarator configurations for which the helical

ripple is largely responsible for the losses in the plateau regime.

VI. CONCLUDING REMARKS

A general solution of the ripple-averaged kinetic equation has been presented in
this paper and used to investigate neoclassical transport in the model magnetic field of a
simple stellarator. The solution possesses several desirable traits which are summarized

in the following, along with their ramifications. .

¢ The solution is valid throughout the entire long-mean-free-path regime and is therefore
capable of determining neoclassical transport coefficients for large stellarator experi-
ments and for stellarator reactor plasmas.

e The solution accounts for the entire range of pitch-angle values, treating the regions of
velocity space in which ripple-localized and non-localized particles exist in an equal and
self-consistent manner. It has been demonstrated that complete and accurate solutions
of the kinetic equations for non-localized particles are indispensable to a comprehensive
description of neoclassical transport in stellarators. This refutes the common theoretical
approaches in which non-localized particles are ignored entirely or handled in a greatly

simplified fashion.
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e All drift terms present within the framework of the ripple-averaged theory are ac-
counted for, including the collisionless variation of the pitch-angle variable which is
routinely neglected in comparison to the collisional changes brought about by the
Lorentz operator. Further, the poloidal rotation of localized particles includes the full
contributions arising due to the ExB and VB drifts. The common assumption that
the ExB drift dominates may thus be dropped; indeed, the solution may be used to
consider cases where precisely the opposite is true.

e The solution has been implemented numerically — in the code GSRAKE — and is
extremely efficient computationally. CPU times of a few seconds or less are typical for
a single run even for calculations in which the collision frequency is very small. This
represents an improvement of more than two orders of magnitude in comparison to
previous numerical approaches.

Results obtained with GSRAKE have been thoroughly benchmarked with those of
other numerical simulations. A detailed comparison of solutions for the perturbed dis-
tribution function has been carried out with GSRAKE’s nearest numerical relative, the
FLOCS code. Monoenergetic-diffusion coefficients for a stellarator reactor plasma have
been determined using GSRAKE, FLOCS, a Monte Carlo simulation and the DKES
code. Good agreement of the numerical results was observed in all of these comparisons,
GSRAKE requiring but a tiny fraction of the computational time necessary for the other
calculations.

The computational speed of GSRAKE makes it ideally suited for further studies
of neoclassical transport, including a detailed investigation of parameter scalings in the
long-mean-free-path regime. Future tasks include the extension of the code to treat more
general magnetic-field models which accurately describe the majority of stellarator-type
devices [25]. Ultimately, this should allow the calculation of neoclassical transport
coefficients and self-consistent radial electric fields for such configurations in a fraction

of the time usually required.
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APPENDIX

The conventional analytic theory of neoclassical transport in stellarators makes

extensive use of the second adiabatic invariant

2R

= _ [iB Y2 A(k2).
|£{_p| (lu Umfh) 4(1‘ )

J = fdf mu) = 21‘;,#:(/\2),. =
which is a constant of the motion for ripple-localized particles. In the set of coordinate

variables (r,6,€,u) the ripple-averaged (or bounce-averaged) drift equations of localized

particles may be determined from

0= 5 (%) (3%)
0= 5 (50) ()

(E—q®)/uBo — 1+ €1 cosb + e
2ep

Recalling that
k2 =

and performing the indicated differentiation, one obtains

)=

(0)r = Qg + Qp(cosn)r + Nycosb,

where the FLOCS assumptions € = ¢; and x =~ uBy have been made. Consistent with
the usual ordering scheme, O(¢;) terms in the drift equations appearing due to the
radial and poloidal variation of R = Ry +  cos 8 have been neglected.

The invariance of 7 may also be used to determine the ripple-averaged expression

for the time rate of change of k2,

dg 87, .87, . 0J

_ vJo SV o2
E =0 or (T>T' o 96 (6)7" + k2 (}L )T"

Although it is usually thought of as a pitch-angle variable, the calculation here 1s
simplest if k% assumes the role of the energy, i.e., if the partial derivatives are taken
at constant u. Before doing so, however, it is important fo note that, in general,
Qg /vy must be considered O(e, '), with the consequence that (9.7 /06) (H)r is O(1)
and may not be neglected. (This fact was overlooked in previous derivations [19.20]

which assumed R = Ry at the outset.) It is then straightforward to show that
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- - o AR?)
k), = ey .l
(k%) (et B~ 5 Qh> sin 6 (i)

where, once again, O(e;) corrections to this expression have been dropped.
Implementation of the numerical scheme employed in the FLOCS code is greatly
facilitated by expressing the kinetic equation in conservation form, stipulating that the

phase-space flow be divergence free

Ji,- (% (7)) + % (7-(6).) + 5% (Jr(i‘2>r)) =0,

where
Jo =~ 4rrR (%)”2 A'(k?)

is the ripple-averaged Jacobian. It may be readily verified that this “three-dimensional”
condition 1s satisfied in leading order, but this proves to be insufficient in two respects.
First, to be numerically useful the divergence must be exactly zero, and second, the
ordering of the kinetic equation eliminates r as a variable from the problem (leaving
it the status of a mere parameter), forcing the divergence condition to be satisfied in
the remaining two dimensions (#,k?). These two requirements are most easily met by
setting R = Ry in the Jacobian and by replacing the true expression for the poloidal

drift frequency with one including small “fictitious” terms

{0) =g (1 + € cost?) + Q4 ((cos n)r — 3?" cos 9) :

ZEh k
If it is further assumed that Jej, /Or = 2¢; /r one may substitute Q4 (€;/2¢;) = 4, which
is the expression used in the FLOCS code. For cases of interest, the fictitious terms
represent O(¢;) changes in (6), and thus do not violate the ordering scheme. This need
not be true, however, when more complicated model magnetic fields are treated [28];

careful interpretation of the results may be necessary in such cases [29].
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